Transformations

Workshop @ NODE17

Matthias Husinsky
Martin Zrcek

Transformations Workshop - Agenda

* Basic Transformations (warm up)
* Scale, Rotate, Translate
* Transformation order and hierarchies
* Example: solar system

* Whatis actually a transform (background math)?
* Points and vectors, reference coordinate systems
* Geometric operations and why matrices rock

* Applying Transforms on values

* Transforms in the rendering pipeline

* Model-, View-, Projection-, Screen Space
* Inverse of transforms
* Ortho vs. Perspective transforms

* Within“ Nodes

* Specials
* Homography, ...

* Quaternions?

Transformations Workshop - Agenda

* Bring your own transformation problem

Patches (folder basics)

e Simple Transforms

* Scale, Rotate, Translate =2 Transform Node

Order of Transformation

* Reading Transformations from Bottom to Top
e Reading Transformations from Top to Bottom

* Example: Solar System

* The moon has the world as a ,parent” in the transformation hierarchy. Every
transformation the world does, the moon will do as well.

Order of Transformation
Case: Tracking Data from VR System

* Tracking data is always relative to its reference coordinate system
 Comes directly from VR-API

* We want to be able to move around in the world (i.e. for
teleportation)
* Problem: Where to put your own transform

e Solution:

e * (Transform) node allows to ,,insert” a Tranform before a chain of other
transforms (top-end or parent)

* See patch

Now for some theory

NODE 17 | Workshop on Transforms | Matthias Husinsky & Martin Zrcek

Matrices — A short intro

* Matrices are great tools for solving many mathematical problems

efficiently (= linear algebra)

e Matrices consist of rows and columns
* They define their dimensionality

. a c¢ _ a c e
e.g.2x2matr|x:[b d]’ 1x4 matrix: , 3x2: [b d f]’ 4x4.

QLA o9

* Points and vectors can be written as matrices:
e Here as an 3x1 matrix: [X Y Z]

IQ.‘ ~ @QI

> N ®

o~ w‘\n. o~

= O 3 3

Multiplying Matrices

* To be able to multiply matrices, their dimensionality need to be
compatible

* E.g. 2x3 * 3x3 2 2x3

* Inner numbers need to be the same (otherwise they are incompatible)
* Quter numbers define the resulting dimensionality

_[(ua+vb+wc) (ud+ve+wf) (ug-+vh+ wi)

’u % W]
(] * -
(xa+yb+2zc) (xd+ye+zf) (xg+ yh+ zi)

X vy z

|ﬁ®g|

r
h
i_

0 X

* For multiplication, always combine the rows of the first matrix with the
columns of the second matrix

Transformations can be written as matrices

* Which is a great trick, because we can combine the effects of multiple
transformations into one matrix (as we will see)

* E.g. a Scale Transform in 2D can be written like this:

S. 0
*

o [Xx V] 0 S

= [x*5, y *5)], (whereS,, S, are the scaling factors)

* Example: Point [2 1], Factors S,=3, S, =3

|2 1]*[3 g]=[(2*3+1*0) (2x0+1%3)]=[6 3]

Transformations can be written as matrices

. gh a rotation matrix in 2D looks like this
(where 8 is the angle of rotation in radians):

[cos O sin@] _

o |X
[Y1 l—sin@ cosé6

= [(x*xcosO@ +vy x(—sinf)) (x *sinf + vy *cosf)]

* Example: Point [1 1] rotated by 8 = 45 degrees (= 0.785 rad)
* cosf =+2/2 =0.707
. sinH—\/_/2—0707
cos@ sinf 1 1]+ [\/E/Z V2/2

—sinf cos @ —/2/2 \/7/2]:[0 L41]

Transformations can be written as matrices?

 But how about a translation?

e point + vector = translated point
[Y]+la b]l=[x+a y+D]

* Example: Point [2 1], Vector [1 1]
|2 1]+[1 1]=1[3 2]

* Can this somehow be written as a matrix in a similar form as scaling
and rotation, so that we can combine them?

Homogenous coordinates (2D)

* We'll apply another trick, called homogenous coordinates:
* For simplicity, we’ll start explaining this concept using 2D space (and move on to 3D later)

* Assume, that 2D space is actually just a sub space of 3D space
e Qur 2D spaceis a plane in 3D space
* In this 3D space our 2D plane is located at coordinatez=1

* Example

* A 2D point [3 2] has in this 3D space the coordinates [3 2 1]

S. 0 0
* The scale operation in 2D homogenous coordinates: 0 S, 0]
0 0 1

* The rotate operation in 2D homogenous coordinates: |—sin6 cos6 0
0 0 1

[cosf@ sinf 0]

Homogenous coordinates (2D)

* We can now apply all operations like before
* As long as the results stays in our 2D plane with z=1

* Example: The scale operation from before P[2 1], S, =3, S, =3

3 0 0
2 1 1]*[0 3 O]=[6 3 1]
0 0 1

* = which corresponds to [6 3] in 2D

Translation in Homogenous Coordinates (2D)

* A translation in 2D space can now be written with homogenous
matrix like this

1 0 O
e [x y 1]%]0 1 O]=[x+Tx y + 1]
T 1

X

« 2 whichispoint[x +Tx y+Ty]in2D

Homogenous coordinates (2D)

* We now have matrices of same dimensionality (3x3)
for SCALE, ROTATE, and TRANSLATE

* Which is great, because we can now concatenate them at our own pleasing

* Example: Create a transformation matrix that translates, scales and rotates points

e [x" y" 1] =[x y 1]+« [translate] * [scale] * [rotate] =

=[x y 1] =[product of translate, scale,rotate]

= One Transformation (matrix) that contains all the properties of the base
transforms in this order and can be applied to all points (e.g. all vertices of one
geometry like a quad or sphere, to transform the whole object)

NODE 17 | Workshop on Transforms | Matthias Husinsky & Martin Zrcek

Homogenous Coordinates (3D)

* Its easy to extend this principle from 2D to 3D space
* This means that our 3D space is a sub space of a 4D space

* 4D space is something we cannot imagine
 We are only used to 3D space

* Butis no problem computationally
 mathematicians don‘t care about our imagination ;)

e Let’s have a look!

Translation matrix

* 3D Translation written in homogenous coordinates

o O

x" v Z 1] =[x y z 1] %

S = O

~3
~3

-0 O

ﬂ

m O OO

Scale Matrix

* 3D Scale matrix written in homogenous coordinates

S0
¥y 2 =[xy oz Us|)
0 0

0
0
SZ

0

RO oo

Rotation Matrix

* Rotations, as we usually use them, are performed individually around
each axis (x,y,z)

* Example: rotation matrix for rotation of a point around z-axis with
angle 0 in radians (watch out, input in Rotation-node is in cycles)

' cosf sin6
—sinf cos6
0 0
0 0

x" vy Zz' 1]l =[x y z 1] %

S = O O
_ O O O

Rotation Matrix

* Rotation matrix for rotation of a point around x-axis with angle 0

1 0 0
O cosf sinf
0 —sinf@ cos6
0 0 0

x" v Z 1]l =[x y z 1] %

RO oo

Rotation Matrix

* Rotation matrix for rotation of a point around y-axis with angle 0

cos® (0 —sin@ O

!/ !/ !/ 0 1 O O
= 1

'y oz 1l x vz | sind 0 cosf@ O

0 0 0 1.

Extra info on rotation matrices ™

ttttttttt

]
* These kind of rotations are called EULER-rotations o

* Each rotation around an axis is an individual operation!

* Using this method it is not possible to perform a rotation around an arbitrary
line in space (which is not one of the three main axis)

* The Rotation (Transform) node actually has an order of rotations
around the axes (YXZ)

Extra info on rotation matrices

* Rotations applied one after the other can become a problem

. qucder: Rotating around several axes in the wrong order might cause unwanted side
effects

* E.g. Gimbal lock:
* https://www.youtube.com/watch?v=zc8b2Jo7mno
* VVeekendVVorkshop: Everything Rotation: https://www.youtube.com/watch?v=I5dUeXI| yJ8

-2 Itis not possible to rotate an object in a straight line from any position to
another, which is a problem for animations

* See patch Euler Rotations

e Solution: Quaternions

e Hard to understand for most of us, but super mighty (and not that hard to use)
e - see patch microdee gimbal_lock

https://www.youtube.com/watch?v=zc8b2Jo7mno
https://www.youtube.com/watch?v=I5dUeXI_yJ8

Try it out in VVVV

* Translate, Rotate, Scale

* ApplyTransform, * (Transform Vector)

* GetMatrix
* Allows you to look at the values in a 4x4 transform matrix

* SetMatrix
e Allows you to manually set the transforms in a matrix

* GetMatrix/SetMatrix can be handy if you need to save a transform to disk
* You can just serialize these 16 values

Conventions for Matrices and Vectors

* Different conventions for vectors and matrices exist

* DirectX-style (VVVV) vs. textbook-style (OpenGL)
* Row-major notation vs. column-major notation

* [t's the same!

* (Just be aware which flavor you are using when interpreting stuff you read
online or in books)

column-major Notation (OpenGL default)

mll m21 m3l |mdl
ml2 m22 mai2 |m4d2
mld m23 m33 |md3

mld m24 mid mdd

row-major Notation

mll ml2 ml3 mld
m2l m22 m23 24
ma3l m32 mai3d maid
mdl m42 rn43]rn44

(vl 02 w3 wvd) -

NODE 17 | Workshop Transbation+~Gd nviesrhemtHusinsky & Martin Zrcek

Transformations in the rendering pipeline

* What happens in the pipeline on the way from 3D-objects to 2D pixels

* Spaces and transforms
* Model/Object space

 World transform
e View transform
* Projection transform

* Screen space

* See Microsoft documentation on the implementation details
* https://msdn.microsoft.com/de-de/library/windows/desktop/ee418867(v=vs.85).aspx

NODE 17 | Workshop on Transforms | Matthias Husinsky & Martin Zrcek

https://msdn.microsoft.com/de-de/library/windows/desktop/ee418867(v=vs.85).aspx

Model/Object Space and World Transform

* Model or Object Space
* The vertex coordinates of any 3D object are defined in ,,model space”
* (its just a description, how an object looks like)

* E.g. a Quad will always have vertices
at coordinates -0.5/0.5, 0.5/0.5, 0.5/-0.5, -0.5/-0.5
That is the way it is defined. [meeain

.I]uaa - " in here the model is defined
|

e World Transform

* When placing/transforming any object in our 3D space, we apply a world
transform on it

View Transform

We could think of the view transform as a camera, that we place in space (by
moving and rotating):

But now try this:

If we think think of the view transform like a camera:
 we would expect the axis object moving to the left for a positive x-Translation
* The opposite is the case = the axis object moved to the right

This is because
* The view transform actually does NOT transform a camera
* It actually transforms the entire world in the opposite way
* (e.g. moving a camera to the right is the same as moving the whole world to the left)

The Inverse of a transform

* To be able to think of the View Transform like a virtual camera (which
appears more natural to us), we can apply the inverse of a transform
to place the ,,camera“ like expected (using any basic transform)

* The inverse of a transform is a transform that I e
does the ,,opposite” of any transform —

e E.g.if atranform describes movement of [-1 3], the S
inverse of the transform will move the object by [1 -3] l

The LookAt transform

* The LookAt node can be very handy to define a position/rotation
transform by
* Having one point in space, where our camera should be
* Having another point in space, where the camera should , Look At“
* (and an up-vector to know, how our view is rotated)

* The LookAt node is meant to be used on the renderer directly

* It still can by applied to any object, but we then need to use the inverse of
this transform.

* See patch LookAt_for_Objects

Projection Transform

* The projection transform allows to manipulate the view onto the

world

e Perspective transform (central projection)
* Parameter: Field of View (the ,,zoom*“ factor of the camera)
* Node: Perspective

e Orthogonal transform (parallel projection)
* Node: Ortho

/ L= Projection plane

/ \\Proiecror
DOP -
Projection plane

http://jcsites.juniata.edu/faculty/rhodes/graphics/viewing.htm

