
Transformations
Workshop @ NODE17

Matthias Husinsky

Martin Zrcek

NODE 17 | Workshop on Transforms | Matthias Husinsky & Martin Zrcek

Transformations Workshop - Agenda

• Basic Transformations (warm up)
• Scale, Rotate, Translate
• Transformation order and hierarchies
• Example: solar system

• What is actually a transform (background math)?
• Points and vectors, reference coordinate systems
• Geometric operations and why matrices rock

• Applying Transforms on values

• Transforms in the rendering pipeline
• Model-, View-, Projection-, Screen Space

• Inverse of transforms

• Ortho vs. Perspective transforms

• „Within“ Nodes

• Specials
• Homography, …

• Quaternions?

NODE 17 | Workshop on Transforms | Matthias Husinsky & Martin Zrcek

Transformations Workshop - Agenda

• Bring your own transformation problem

NODE 17 | Workshop on Transforms | Matthias Husinsky & Martin Zrcek

Patches (folder basics)

• Simple Transforms

• Scale, Rotate, Translate Transform Node

NODE 17 | Workshop on Transforms | Matthias Husinsky & Martin Zrcek

Order of Transformation

• Reading Transformations from Bottom to Top

• Reading Transformations from Top to Bottom

• Example: Solar System
• The moon has the world as a „parent“ in the transformation hierarchy. Every

transformation the world does, the moon will do as well.

NODE 17 | Workshop on Transforms | Matthias Husinsky & Martin Zrcek

Order of Transformation
Case: Tracking Data from VR System
• Tracking data is always relative to its reference coordinate system

• Comes directly from VR-API

• We want to be able to move around in the world (i.e. for
teleportation)
• Problem: Where to put your own transform

• Solution:
• * (Transform) node allows to „insert“ a Tranform before a chain of other

transforms (top-end or parent)

• See patch

NODE 17 | Workshop on Transforms | Matthias Husinsky & Martin Zrcek

Now for some theory

NODE 17 | Workshop on Transforms | Matthias Husinsky & Martin Zrcek

Matrices – A short intro

• Matrices are great tools for solving many mathematical problems
efficiently ( linear algebra)

• Matrices consist of rows and columns
• They define their dimensionality

e.g. 2x2 matrix :
𝑎 𝑐
𝑏 𝑑

, 1x4 matrix:

𝑎
𝑏
𝑐
𝑑

, 3x2:
𝑎 𝑐 𝑒
𝑏 𝑑 𝑓 , 4x4:

𝑎 𝑒 𝑖 𝑚
𝑏 𝑓 𝑗 𝑛
𝑐 𝑔 𝑘 𝑜
𝑑 ℎ 𝑙 𝑝

• Points and vectors can be written as matrices:
• Here as an 3x1 matrix: 𝑥 𝑦 𝑧

NODE 17 | Workshop on Transforms | Matthias Husinsky & Martin Zrcek

Multiplying Matrices

• To be able to multiply matrices, their dimensionality need to be
compatible

• E.g. 2x3 * 3x3  2x3

• Inner numbers need to be the same (otherwise they are incompatible)
• Outer numbers define the resulting dimensionality

•
𝑢 𝑣 𝑤
𝑥 𝑦 𝑧 ∗

𝑎 𝑑 𝑔
𝑏 𝑒 ℎ
𝑐 𝑓 𝑖

=
(𝑢𝑎 + 𝑣𝑏 + 𝑤𝑐) (𝑢𝑑 + 𝑣𝑒 + 𝑤𝑓) (𝑢𝑔 + 𝑣ℎ + 𝑤𝑖)

𝑥𝑎 + 𝑦𝑏 + 𝑧𝑐 𝑥𝑑 + 𝑦𝑒 + 𝑧𝑓 𝑥𝑔 + 𝑦ℎ + 𝑧𝑖

• For multiplication, always combine the rows of the first matrix with the
columns of the second matrix

NODE 17 | Workshop on Transforms | Matthias Husinsky & Martin Zrcek

Transformations can be written as matrices

• Which is a great trick, because we can combine the effects of multiple
transformations into one matrix (as we will see)

• E.g. a Scale Transform in 2D can be written like this:

• 𝑥 𝑦 ∗
𝑆𝑥 0
0 𝑆𝑦

= 𝑥 ∗ 𝑆𝑥 𝑦 ∗ 𝑆𝑦 , (where Sx, Sy are the scaling factors)

• Example: Point [2 1], Factors Sx=3, Sy = 3

2 1 ∗
3 0
0 3

= 2 ∗ 3 + 1 ∗ 0 2 ∗ 0 + 1 ∗ 3 = 6 3

NODE 17 | Workshop on Transforms | Matthias Husinsky & Martin Zrcek

Transformations can be written as matrices

• E.g. a rotation matrix in 2D looks like this
(where 𝜃 is the angle of rotation in radians):

• 𝑥 𝑦 ∗
cos 𝜃 sin 𝜃
−sin 𝜃 cos 𝜃

=

= (𝑥 ∗ cos 𝜃 + 𝑦 ∗ (−sin 𝜃)) (𝑥 ∗ sin 𝜃 + 𝑦 ∗ cos 𝜃)

• Example: Point [1 1] rotated by 𝜃 = 45 degrees (= 0.785 𝑟𝑎𝑑)
• cos 𝜃 = 2/2 = 0.707
• sin 𝜃 = 2/2 = 0.707

• 1 1 ∗
cos 𝜃 sin 𝜃
−sin 𝜃 cos 𝜃

= 1 1 ∗
2/2 2/2

− 2/2 2/2
= 0 1.41

NODE 17 | Workshop on Transforms | Matthias Husinsky & Martin Zrcek

Transformations can be written as matrices?

• But how about a translation?

• point + vector = translated point
• 𝑥 𝑦 + 𝑎 𝑏 = 𝑥 + 𝑎 𝑦 + 𝑏

• Example: Point [2 1], Vector [1 1]
• 2 1 + 1 1 = 3 2

• Can this somehow be written as a matrix in a similar form as scaling
and rotation, so that we can combine them?

NODE 17 | Workshop on Transforms | Matthias Husinsky & Martin Zrcek

Homogenous coordinates (2D)

• We‘ll apply another trick, called homogenous coordinates:
• For simplicity, we‘ll start explaining this concept using 2D space (and move on to 3D later)

• Assume, that 2D space is actually just a sub space of 3D space
• Our 2D space is a plane in 3D space
• In this 3D space our 2D plane is located at coordinate z = 1

• Example

• A 2D point [3 2] has in this 3D space the coordinates [3 2 1]

• The scale operation in 2D homogenous coordinates:
𝑆𝑥 0 0
0 𝑆𝑦 0
0 0 1

• The rotate operation in 2D homogenous coordinates:
cos 𝜃 sin 𝜃 0
−sin 𝜃 cos 𝜃 0

0 0 1

NODE 17 | Workshop on Transforms | Matthias Husinsky & Martin Zrcek

Homogenous coordinates (2D)

• We can now apply all operations like before
• As long as the results stays in our 2D plane with z=1

• Example: The scale operation from before P[2 1], Sx = 3, Sy = 3

2 1 1 ∗
3 0 0
0 3 0
0 0 1

= 6 3 1

• which corresponds to [6 3] in 2D

NODE 17 | Workshop on Transforms | Matthias Husinsky & Martin Zrcek

Translation in Homogenous Coordinates (2D)

• A translation in 2D space can now be written with homogenous
matrix like this

• 𝑥 𝑦 1 ∗
1 0 0
0 1 0
𝑇𝑥 𝑇𝑦 1

= 𝑥 + 𝑇𝑥 𝑦 + 𝑇𝑦 1

•  which is point 𝑥 + 𝑇𝑥 𝑦 + 𝑇𝑦 in 2D

NODE 17 | Workshop on Transforms | Matthias Husinsky & Martin Zrcek

Homogenous coordinates (2D)

• We now have matrices of same dimensionality (3x3)
for SCALE, ROTATE, and TRANSLATE
• Which is great, because we can now concatenate them at our own pleasing

• Example: Create a transformation matrix that translates, scales and rotates points

• 𝑥′ 𝑦′ 1 = 𝑥 𝑦 1 ∗ 𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑒 ∗ 𝑠𝑐𝑎𝑙𝑒 ∗ 𝑟𝑜𝑡𝑎𝑡𝑒 =

= 𝑥 𝑦 1 ∗ 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑜𝑓 𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑒, 𝑠𝑐𝑎𝑙𝑒, 𝑟𝑜𝑡𝑎𝑡𝑒

•  One Transformation (matrix) that contains all the properties of the base
transforms in this order and can be applied to all points (e.g. all vertices of one
geometry like a quad or sphere, to transform the whole object)

3x3 3x3 3x3

3x3

1x3

1x3

NODE 17 | Workshop on Transforms | Matthias Husinsky & Martin Zrcek

Homogenous Coordinates (3D)

• It‘s easy to extend this principle from 2D to 3D space

• This means that our 3D space is a sub space of a 4D space

• 4D space is something we cannot imagine
• We are only used to 3D space

• But is no problem computationally
• mathematicians don‘t care about our imagination ;)

• Let‘s have a look!

NODE 17 | Workshop on Transforms | Matthias Husinsky & Martin Zrcek

Translation matrix

• 3D Translation written in homogenous coordinates

𝑥′ 𝑦′ 𝑧′ 1 = 𝑥 𝑦 𝑧 1 ∗

1 0 0 0
0 1 0 0
0 0 1 0
𝑇𝑥 𝑇𝑦 𝑇𝑧 1

NODE 17 | Workshop on Transforms | Matthias Husinsky & Martin Zrcek

Scale Matrix

• 3D Scale matrix written in homogenous coordinates

𝑥′ 𝑦′ 𝑧′ 1 = 𝑥 𝑦 𝑧 1 ∗

𝑆𝑥 0 0 0
0 𝑆𝑦 0 0
0 0 𝑆𝑧 0
0 0 0 1

NODE 17 | Workshop on Transforms | Matthias Husinsky & Martin Zrcek

Rotation Matrix

• Rotations, as we usually use them, are performed individually around
each axis (x,y,z)

• Example: rotation matrix for rotation of a point around z-axis with
angle 𝜽 in radians (watch out, input in Rotation-node is in cycles)

𝑥′ 𝑦′ 𝑧′ 1 = 𝑥 𝑦 𝑧 1 ∗

cos 𝜃 sin 𝜃 0 0
−sin 𝜃 cos 𝜃 0 0

0 0 1 0
0 0 0 1

NODE 17 | Workshop on Transforms | Matthias Husinsky & Martin Zrcek

Rotation Matrix

• Rotation matrix for rotation of a point around x-axis with angle 𝜽

𝑥′ 𝑦′ 𝑧′ 1 = 𝑥 𝑦 𝑧 1 ∗

1 0 0 0
0 cos 𝜃 sin 𝜃 0
0 −sin 𝜃 cos 𝜃 0
0 0 0 1

NODE 17 | Workshop on Transforms | Matthias Husinsky & Martin Zrcek

Rotation Matrix

• Rotation matrix for rotation of a point around y-axis with angle 𝜽

𝑥′ 𝑦′ 𝑧′ 1 = 𝑥 𝑦 𝑧 1 ∗

cos 𝜃 0 −sin 𝜃 0
0 1 0 0

sin 𝜃 0 cos 𝜃 0
0 0 0 1

NODE 17 | Workshop on Transforms | Matthias Husinsky & Martin Zrcek

Extra info on rotation matrices

• These kind of rotations are called EULER-rotations

• Each rotation around an axis is an individual operation!
• Using this method it is not possible to perform a rotation around an arbitrary

line in space (which is not one of the three main axis)

• The Rotation (Transform) node actually has an order of rotations
around the axes (YXZ)

NODE 17 | Workshop on Transforms | Matthias Husinsky & Martin Zrcek

Extra info on rotation matrices

• Rotations applied one after the other can become a problem
• Order: Rotating around several axes in the wrong order might cause unwanted side

effects
• E.g. Gimbal lock:

• https://www.youtube.com/watch?v=zc8b2Jo7mno
• VVeekendVVorkshop: Everything Rotation: https://www.youtube.com/watch?v=I5dUeXI_yJ8

•  It is not possible to rotate an object in a straight line from any position to
another, which is a problem for animations
• See patch Euler Rotations

• Solution: Quaternions
• Hard to understand for most of us, but super mighty (and not that hard to use)
•  see patch microdee_gimbal_lock

NODE 17 | Workshop on Transforms | Matthias Husinsky & Martin Zrcek

https://www.youtube.com/watch?v=zc8b2Jo7mno
https://www.youtube.com/watch?v=I5dUeXI_yJ8

Try it out in VVVV

• Translate, Rotate, Scale

• ApplyTransform, * (Transform Vector)

• GetMatrix
• Allows you to look at the values in a 4x4 transform matrix

• SetMatrix
• Allows you to manually set the transforms in a matrix

• GetMatrix/SetMatrix can be handy if you need to save a transform to disk
• You can just serialize these 16 values

NODE 17 | Workshop on Transforms | Matthias Husinsky & Martin Zrcek

Conventions for Matrices and Vectors

• Different conventions for vectors and matrices exist
• DirectX-style (VVVV) vs. textbook-style (OpenGL)

• Row-major notation vs. column-major notation

• It‘s the same!
• (Just be aware which flavor you are using when interpreting stuff you read

online or in books)

NODE 17 | Workshop on Transforms | Matthias Husinsky & Martin Zrcek

Transformations in the rendering pipeline

• What happens in the pipeline on the way from 3D-objects to 2D pixels

• Spaces and transforms
• Model/Object space

• World transform
• View transform
• Projection transform

• Screen space

• See Microsoft documentation on the implementation details
• https://msdn.microsoft.com/de-de/library/windows/desktop/ee418867(v=vs.85).aspx

NODE 17 | Workshop on Transforms | Matthias Husinsky & Martin Zrcek

https://msdn.microsoft.com/de-de/library/windows/desktop/ee418867(v=vs.85).aspx

Model/Object Space and World Transform

• Model or Object Space
• The vertex coordinates of any 3D object are defined in „model space“

• (it‘s just a description, how an object looks like)

• E.g. a Quad will always have vertices
at coordinates -0.5/0.5 , 0.5/0.5 , 0.5/-0.5, -0.5/-0.5
That is the way it is defined.

• World Transform
• When placing/transforming any object in our 3D space, we apply a world

transform on it

NODE 17 | Workshop on Transforms | Matthias Husinsky & Martin Zrcek

View Transform

• We could think of the view transform as a camera, that we place in space (by
moving and rotating):

• But now try this:

• If we think think of the view transform like a camera:
• we would expect the axis object moving to the left for a positive x-Translation
• The opposite is the case the axis object moved to the right

• This is because
• The view transform actually does NOT transform a camera
• It actually transforms the entire world in the opposite way
• (e.g. moving a camera to the right is the same as moving the whole world to the left)

NODE 17 | Workshop on Transforms | Matthias Husinsky & Martin Zrcek

The Inverse of a transform

• To be able to think of the View Transform like a virtual camera (which
appears more natural to us), we can apply the inverse of a transform
to place the „camera“ like expected (using any basic transform)

• The inverse of a transform is a transform that
does the „opposite“ of any transform
• E.g. if a tranform describes movement of [-1 3], the

inverse of the transform will move the object by [1 -3]

NODE 17 | Workshop on Transforms | Matthias Husinsky & Martin Zrcek

The LookAt transform

• The LookAt node can be very handy to define a position/rotation
transform by
• Having one point in space, where our camera should be

• Having another point in space, where the camera should „Look At“

• (and an up-vector to know, how our view is rotated)

• The LookAt node is meant to be used on the renderer directly
• It still can by applied to any object, but we then need to use the inverse of

this transform.

• See patch LookAt_for_Objects

NODE 17 | Workshop on Transforms | Matthias Husinsky & Martin Zrcek

Projection Transform

• The projection transform allows to manipulate the view onto the
world

• Perspective transform (central projection)
• Parameter: Field of View (the „zoom“ factor of the camera)

• Node: Perspective

• Orthogonal transform (parallel projection)
• Node: Ortho

http://jcsites.juniata.edu/faculty/rhodes/graphics/viewing.htmNODE 17 | Workshop on Transforms | Matthias Husinsky & Martin Zrcek

