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Intro 
● Top-Down​ view on everything 
● 6 topics with 30 minutes 

○ Document handling​ and how it affects the ​node browser 
○ Definitions and Applications​ how ​nodes are made and used​ in detail 
○ Data types​ and how the ​type system helps you 
○ Evaluation and control ​flow, ​when does stuff happen​ and how define it 
○ Generic definitions​, extension of normal definitions, ​very practical nodes 
○ Loops and collections, ​spreads not spreading, ​simpler slicewise thinking 

handle dynamic instances 
● Very small and ​simple examples 
● Most concepts can be ​explained with simpler ones 
● Patch/UI features are ​sugar/shortcuts 

Document Handling 

Structure 
● Starting VL creates a ‘​Session​’ → similar to websites 
● The ‘Session’ has a ‘​Solution​’ which is the Root element 
● The ‘Solution’ consists of one or more .vl docs → see solution explorer ”All Documents” 
● One .vl doc can define any number of nodes → ​Whole project in one file​, more 

convenient faster to navigate 
● Doc can ​reference ​other docs → called ​dependency ​→  keep nice relative structure 
● Can also reference ​c# dlls and nugets 

 

Definitions 
● Adding a ​dependency​ means ​adding nodes to the node browser 
● Making patches → making definitions → definitions in doc also add to the node browser 

(registry, marketplace of nodes) 
● Add help text​ via CTRL + M 
● ‘Forward’ ​definitions of a dependency → ​add definitions to own definitions​ if another 

document references this document → rather used by ​library patchers 
 

VVVV Integration 
● Node definitions need to be in ​category that starts with ‘VVVV’ 



● Drop .vl with vvvv nodes on .v4p → pop-up with available nodes 
● Place in ‘vl’ folder​ besides .v4p → available nodes in NodeBrowser 

 

Definitions and Applications 

Patch Types 
● Document Patch → void, contains definitions 
● Group Patch → extends document patch → ​like “folder” in file system 
● Util Operation Patch 
● Process/Record/Class Patch 

Node Definitions 
● Every definition ​adds to node browser 
● Four ​node definition types​: 

○ Process  
○ Member Operation 
○ Util Operation 
○ Delegate → ​ah hoc operation definition​, not added to node browser, can only 

be used by ​Invoke ​→ can link stuff into it from enclosing operation 
● Stateful 

○ Process 
○ Member Operation 

● Stateless 
○ Utility Operation 
○ Delegate 

● VVVV nodes 
○ Any ​util ​or ​process 
○ Category ​starts with VVVV 
○ Non-generic 

 

Node Applications 
● ‘calls’ the operation​ with given data 
● Nodes get called if containing patch gets called → strict evaluation 
● Calling starts somewhere​ → vvvv node gets called by ​mainloop​, also ​input devices 

start a call 
● Main patches (vvvv nodes) call their nodes → and so on 
● “Uses” has similar meaning → tell compiler to make an application here 



● Regions ​have ‘something like operation’ inside that gets (maybe) called somewhen else 
→ delegate is an ‘ad hoc’ operation 

● Three (four) node types that call operations: 
○ Process node → ​needs stateful patch​ (other process, record, class), only a 

shortcut for pad + ops​, can be turned into a type by placing it into wrapper type 
○ Utility Operation node → ​can be placed everywhere​, ​needs all data put in 

(from input pins or pads) 
○ Member Operation node → nothing special, ​same as util, just has “state” 

in/out​ of defining type, but ​also needs all data fed in​ (“instance of defining 
type”)  

○ “​Invoke​” is a special operation node → doesn’t call operation from node browser, 
but from ​delegate at input pin 

● Main questions​ as patcher are on ​what operation​ ​are you currently patching​ and 
when will it be called? 

Pin Groups 
● Of node can be ​chained → multiple pins 
● First in and out has to match​, other pins can be anything 
● Kind of ​easy with member ops​ → show in demo patch 

Data Types and Data Flow 

The Data Tree 
● Just to get the ​big picture 
● Your program is a big tree of ​structured data + operations 
● If nothing gets called the tree stays the same forever 
● Operations change the tree​ on every frame/other external input device call 
● You ​know a few from vvvv​ (value, color, string) → ​now many more and make your 

own 
● Each ​field (pad, property​) creates a new branch of a given type in the tree → 

instructing the machine to provide this memory space with this data 
● Process nodes​ also build up the tree, even more obvious (​is pad + ops​) 
● The ​machine automatically takes care of well structured data​ ​→ type system 
● The more types you nest into each other the more powerful this concept gets 
● Inside an operation​ you have a contract via the types/signature that makes sure you 

don’t have take care of the outside world​ when patching in a type 
● Allows to ​patch everything for just one slice​ → that is the most simple case 
● Type system also helps a lot​ while patching, ​always ask what type is the data? → 

gives information of what the data is intended for and what operations are available for it 



Data Fields 
● Define the ​structure of the type​ → each field adds to the ​memory 
● Description/template/blueprint for ​all possible instances of that type → ​concrete 

values → one concrete instance 
● Operations ​can ​read/write this data 
● Data of fields comes in via state pins​ → show example with one field → differences of 

record and class 
● Just a shortcut for split/join and util operation 
● All would work with only records without operations + util ops 
● But it's ​super handy​… → see some basic types like ​S+H or FlipFlop 
● Patch simple ​MyRect example 

 

Record vs. Class 
● Record ​is located at the actual data hub and ​moves around​ → operations create ​new 

instances 
● Class ​is located in​ one place​, ​reference moves around​ → all operations ​read and 

modify this place​ → rectangle example switch between record and class 
● Record ​is always the favorite since​ more easy to handle 
● Show patch with change nodes 
● Show audio example → ​records messages​ between threads → ​classes managing 

objects that stay the same 
● Multiple sinks ​order problematic for classes → warning in patch →  ​see next topic 

Evaluation and Control Flow 

Operation Order 
● Operation gets ​called by the operation that uses it​ → if nobody ontop that chain/strain 

gets called by ​mainloop ​or​ input devices ​it ​will not run ​→ there is ​no auto-evaluate 
● Dataflow inherently defines order 
● Show operation patch as basic example 
● Show ​counter patch​ → also ​record vs. class topic 

Process Node Order 
● “Order” entry in ​definition defines order 
● Show comparison patch ​Process vs. explicit patched ops 



Conditional Evaluation 
● If is very ​basic and important ​as a concept, it allows to ​call different code paths 

depending on the ​result of a calculation ​→ route the data flow a different way 
● Show IF region 
● In dataflow​ it makes sense to provide the ​if and else data for the output ​→ 

accumulator → if patch gets called on true or pass ‘unchanged’ data to the output on 
else 

● Compare with ​vvvv Switch​ → ​evaluation differences 
● Show ​enable/disable LFO as type patch​ → makes much sense to ​split GetValue 

from Update​! 
● Enabled pin is ​shortcut for most simple if use case 

Regions 
● Like the If there are ​other regions​ → patch in region can be ​called independently 

from surrounding operation 
● Delegate ​→ ad hoc utility operation definition → ​does not get called by surrounding 

operation​ → only invoke would call it 
● Nodes can take ​delegate via input pin​ and call this ad hoc operation ​whenever they 

want and as often they want​ → different evaluation context → can be on another 
thread like in audio example 

● Reactive nodes​ → ​executes ​delegate ​when event fired ​→ independent from mainloop 
and can be on other thread → CraftLie CPUCoreRace 

● LINQ examples → ​ask user of node for type specific operation​ or stuff the ​developer 
does not know​ but only the person who uses it → ​incomplete operation​ inside 

● Loop is very similar​, executes the patch (delegate) inside it ​for every slice/iteration 
 

Generic Definitions 

Idea 
● Make ​one definition​ → compiler builds ​applications for concrete type 
● Like​ definition is a ‘template’ for all possible instances​, ​generics extend definitions 

in the same way → ​template for all possible types 
● Simplifies patching​ because all ​operations that don’t care about the data​ can be 

made like this → ​Spread, getslice​ and so on… 
● Define once​ use many times in slightly different ways 

Generic Operations 
● Easy to write ​operation for many types that are similar​ (vectors, numbers, collections) 



● Resample spread example 
● Using other generic ops​ helps of course 
● When running into ​type specific trouble/questions​ → ​delegate ​input to handle the 

questions → make incomplete operation and ​complete it with invoke/delegate 

Generic Types 
● Same ​works for types 
● Point with color example 
● Instances ​with ​different type parameters are not compatible​ → ​actually different 

types ​build by the compiler 
● See next topic for most prominent example 

Loops and Collections 

Spreads vs. Spreading vs. Loops 
● Spreads are collections ​that can hold slices of ​any type → generic 
● In​ vvvv spreading​ worked because ​every node has build in loop 
● VL has explicit loops​ → make ​your own spreading​ → no surprises 
● Compare ​spreading vs loops in patch 
● Check ​spread operations 
● Spread of Spread​ handled by the compiler, ​endless ​→ level of spread is number of 

nested loops → see patch 

Other Collections 
● Sequence ​→  the ​mother of all collections​ →​ simplest collection​, can only iterate 

thru slices → only ​ForEach ​works 
● Spread is a Sequence​ → show ​compatible pins ​→ also subtype <> supertype 
● Type hierarchy​ → everything is an ​object​, everything can be connected to an ​object 

input 
● LINQ loves sequences​ (and therefore ​spreads ​(and List, ...)) 
● Other collections have additional features like random access 
● SpreadBuilder is a class​, used ​when a lot of modifications are needed​ → ​spread ​is 

a record ​copy on modification​, good for ​reading and passing data around​ → spread 
builder helps to​ “generate” a spread efficiently ​→ ​ToSpread ‘locks’ the data​ and 
makes it secure 

● See CPUCoreRace example → spreadbuilder gathers all positions → ToSpread send to 
mainloop 

Loops in Detail 
● ForEach ​→ go thru all ​slices via splicer ​→ ​spread min​ when multiple splicers 



● Repeat ​→ set​ iteration count ​→ fixed call count → nice to ​generate spreads 
● Can ​link stuff from outside​ → fixed value for all iterations 
● Splicer ​slice/​element​ of the collection ​per iteration 
● Index pin ​→ iteration number 
● I Spread patch 
● Accumulator ​passes​ data from iteration to iteration ​→ ​possibly new value per 

iteration ​→ ​initial value as input → final value as output 
● Patch examples, odd/even, average 
● Recursive tree ​combination of loops, splicer, accumulator and delegate 
● Don’t forget → ​can give names to everything 

Summary 

Patch Sugar 
● Many concepts are ​only a combination of simpler concepts 
● Process node → field + operations  
● Member operation → split/join of data fields + utility operation​ → data + matching 

operations with state in/out 
● Region node with delegate input ​→ ​on the fly operation definition 

Guidelines 
● Start with Process Definition 
● Extract patch parts into ​small readable utility operations  
● Only ​switch to Record or Class if you need to send the data type over a link​ → call 

operations on an instance in different parts of your patch 
● Record ​for small ​data ‘packages’ the are sent around in the patch​ (rectangle, 

spreads, vectors...) → often re-created every frame → needs to store the new instance 
back to field 

● Class ​for more ​central types that manage​ logic → usually not created/deleted every 
frame 

● Try to keep one path for classes (reference) to have a well defined order → every op 
changes the same data → ​multiple read operations are no problem 

 
 
 
 


