
VL Concepts + Patterns I
Tebjan Halm + Elias Holzer NODE17

Intro

Document Handling
Structure
Definitions
VVVV Integration

Definitions and Applications
Patch Types
Node Definitions
Node Applications
Pin Groups

Data Types and Data Flow
The Data Tree
Data Fields
Record vs. Class

Evaluation and Control Flow
Operation Order
Process Node Order
Conditional Evaluation
Regions

Generic Definitions
Idea
Generic Operations
Generic Types

Loops and Collections
Spreads vs. Spreading vs. Loops
Other Collections
Loops in Detail

Summary
Patch Sugar
Guidelines

Intro
● Top-Down​ view on everything
● 6 topics with 30 minutes

○ Document handling​ and how it affects the ​node browser
○ Definitions and Applications​ how ​nodes are made and used​ in detail
○ Data types​ and how the ​type system helps you
○ Evaluation and control ​flow, ​when does stuff happen​ and how define it
○ Generic definitions​, extension of normal definitions, ​very practical nodes
○ Loops and collections, ​spreads not spreading, ​simpler slicewise thinking

handle dynamic instances
● Very small and ​simple examples
● Most concepts can be ​explained with simpler ones
● Patch/UI features are ​sugar/shortcuts

Document Handling

Structure
● Starting VL creates a ‘​Session​’ → similar to websites
● The ‘Session’ has a ‘​Solution​’ which is the Root element
● The ‘Solution’ consists of one or more .vl docs → see solution explorer ”All Documents”
● One .vl doc can define any number of nodes → ​Whole project in one file​, more

convenient faster to navigate
● Doc can ​reference ​other docs → called ​dependency ​→ keep nice relative structure
● Can also reference ​c# dlls and nugets

Definitions
● Adding a ​dependency​ means ​adding nodes to the node browser
● Making patches → making definitions → definitions in doc also add to the node browser

(registry, marketplace of nodes)
● Add help text​ via CTRL + M
● ‘Forward’ ​definitions of a dependency → ​add definitions to own definitions​ if another

document references this document → rather used by ​library patchers

VVVV Integration
● Node definitions need to be in ​category that starts with ‘VVVV’

● Drop .vl with vvvv nodes on .v4p → pop-up with available nodes
● Place in ‘vl’ folder​ besides .v4p → available nodes in NodeBrowser

Definitions and Applications

Patch Types
● Document Patch → void, contains definitions
● Group Patch → extends document patch → ​like “folder” in file system
● Util Operation Patch
● Process/Record/Class Patch

Node Definitions
● Every definition ​adds to node browser
● Four ​node definition types​:

○ Process
○ Member Operation
○ Util Operation
○ Delegate → ​ah hoc operation definition​, not added to node browser, can only

be used by ​Invoke ​→ can link stuff into it from enclosing operation
● Stateful

○ Process
○ Member Operation

● Stateless
○ Utility Operation
○ Delegate

● VVVV nodes
○ Any ​util ​or ​process
○ Category ​starts with VVVV
○ Non-generic

Node Applications
● ‘calls’ the operation​ with given data
● Nodes get called if containing patch gets called → strict evaluation
● Calling starts somewhere​ → vvvv node gets called by ​mainloop​, also ​input devices

start a call
● Main patches (vvvv nodes) call their nodes → and so on
● “Uses” has similar meaning → tell compiler to make an application here

● Regions ​have ‘something like operation’ inside that gets (maybe) called somewhen else
→ delegate is an ‘ad hoc’ operation

● Three (four) node types that call operations:
○ Process node → ​needs stateful patch​ (other process, record, class), only a

shortcut for pad + ops​, can be turned into a type by placing it into wrapper type
○ Utility Operation node → ​can be placed everywhere​, ​needs all data put in

(from input pins or pads)
○ Member Operation node → nothing special, ​same as util, just has “state”

in/out​ of defining type, but ​also needs all data fed in​ (“instance of defining
type”)

○ “​Invoke​” is a special operation node → doesn’t call operation from node browser,
but from ​delegate at input pin

● Main questions​ as patcher are on ​what operation​ ​are you currently patching​ and
when will it be called?

Pin Groups
● Of node can be ​chained → multiple pins
● First in and out has to match​, other pins can be anything
● Kind of ​easy with member ops​ → show in demo patch

Data Types and Data Flow

The Data Tree
● Just to get the ​big picture
● Your program is a big tree of ​structured data + operations
● If nothing gets called the tree stays the same forever
● Operations change the tree​ on every frame/other external input device call
● You ​know a few from vvvv​ (value, color, string) → ​now many more and make your

own
● Each ​field (pad, property​) creates a new branch of a given type in the tree →

instructing the machine to provide this memory space with this data
● Process nodes​ also build up the tree, even more obvious (​is pad + ops​)
● The ​machine automatically takes care of well structured data​ ​→ type system
● The more types you nest into each other the more powerful this concept gets
● Inside an operation​ you have a contract via the types/signature that makes sure you

don’t have take care of the outside world​ when patching in a type
● Allows to ​patch everything for just one slice​ → that is the most simple case
● Type system also helps a lot​ while patching, ​always ask what type is the data? →

gives information of what the data is intended for and what operations are available for it

Data Fields
● Define the ​structure of the type​ → each field adds to the ​memory
● Description/template/blueprint for ​all possible instances of that type → ​concrete

values → one concrete instance
● Operations ​can ​read/write this data
● Data of fields comes in via state pins​ → show example with one field → differences of

record and class
● Just a shortcut for split/join and util operation
● All would work with only records without operations + util ops
● But it's ​super handy​… → see some basic types like ​S+H or FlipFlop
● Patch simple ​MyRect example

Record vs. Class
● Record ​is located at the actual data hub and ​moves around​ → operations create ​new

instances
● Class ​is located in​ one place​, ​reference moves around​ → all operations ​read and

modify this place​ → rectangle example switch between record and class
● Record ​is always the favorite since​ more easy to handle
● Show patch with change nodes
● Show audio example → ​records messages​ between threads → ​classes managing

objects that stay the same
● Multiple sinks ​order problematic for classes → warning in patch → ​see next topic

Evaluation and Control Flow

Operation Order
● Operation gets ​called by the operation that uses it​ → if nobody ontop that chain/strain

gets called by ​mainloop ​or​ input devices ​it ​will not run ​→ there is ​no auto-evaluate
● Dataflow inherently defines order
● Show operation patch as basic example
● Show ​counter patch​ → also ​record vs. class topic

Process Node Order
● “Order” entry in ​definition defines order
● Show comparison patch ​Process vs. explicit patched ops

Conditional Evaluation
● If is very ​basic and important ​as a concept, it allows to ​call different code paths

depending on the ​result of a calculation ​→ route the data flow a different way
● Show IF region
● In dataflow​ it makes sense to provide the ​if and else data for the output ​→

accumulator → if patch gets called on true or pass ‘unchanged’ data to the output on
else

● Compare with ​vvvv Switch​ → ​evaluation differences
● Show ​enable/disable LFO as type patch​ → makes much sense to ​split GetValue

from Update​!
● Enabled pin is ​shortcut for most simple if use case

Regions
● Like the If there are ​other regions​ → patch in region can be ​called independently

from surrounding operation
● Delegate ​→ ad hoc utility operation definition → ​does not get called by surrounding

operation​ → only invoke would call it
● Nodes can take ​delegate via input pin​ and call this ad hoc operation ​whenever they

want and as often they want​ → different evaluation context → can be on another
thread like in audio example

● Reactive nodes​ → ​executes ​delegate ​when event fired ​→ independent from mainloop
and can be on other thread → CraftLie CPUCoreRace

● LINQ examples → ​ask user of node for type specific operation​ or stuff the ​developer
does not know​ but only the person who uses it → ​incomplete operation​ inside

● Loop is very similar​, executes the patch (delegate) inside it ​for every slice/iteration

Generic Definitions

Idea
● Make ​one definition​ → compiler builds ​applications for concrete type
● Like​ definition is a ‘template’ for all possible instances​, ​generics extend definitions

in the same way → ​template for all possible types
● Simplifies patching​ because all ​operations that don’t care about the data​ can be

made like this → ​Spread, getslice​ and so on…
● Define once​ use many times in slightly different ways

Generic Operations
● Easy to write ​operation for many types that are similar​ (vectors, numbers, collections)

● Resample spread example
● Using other generic ops​ helps of course
● When running into ​type specific trouble/questions​ → ​delegate ​input to handle the

questions → make incomplete operation and ​complete it with invoke/delegate

Generic Types
● Same ​works for types
● Point with color example
● Instances ​with ​different type parameters are not compatible​ → ​actually different

types ​build by the compiler
● See next topic for most prominent example

Loops and Collections

Spreads vs. Spreading vs. Loops
● Spreads are collections ​that can hold slices of ​any type → generic
● In​ vvvv spreading​ worked because ​every node has build in loop
● VL has explicit loops​ → make ​your own spreading​ → no surprises
● Compare ​spreading vs loops in patch
● Check ​spread operations
● Spread of Spread​ handled by the compiler, ​endless ​→ level of spread is number of

nested loops → see patch

Other Collections
● Sequence ​→ the ​mother of all collections​ →​ simplest collection​, can only iterate

thru slices → only ​ForEach ​works
● Spread is a Sequence​ → show ​compatible pins ​→ also subtype <> supertype
● Type hierarchy​ → everything is an ​object​, everything can be connected to an ​object

input
● LINQ loves sequences​ (and therefore ​spreads ​(and List, ...))
● Other collections have additional features like random access
● SpreadBuilder is a class​, used ​when a lot of modifications are needed​ → ​spread ​is

a record ​copy on modification​, good for ​reading and passing data around​ → spread
builder helps to​ “generate” a spread efficiently ​→ ​ToSpread ‘locks’ the data​ and
makes it secure

● See CPUCoreRace example → spreadbuilder gathers all positions → ToSpread send to
mainloop

Loops in Detail
● ForEach ​→ go thru all ​slices via splicer ​→ ​spread min​ when multiple splicers

● Repeat ​→ set​ iteration count ​→ fixed call count → nice to ​generate spreads
● Can ​link stuff from outside​ → fixed value for all iterations
● Splicer ​slice/​element​ of the collection ​per iteration
● Index pin ​→ iteration number
● I Spread patch
● Accumulator ​passes​ data from iteration to iteration ​→ ​possibly new value per

iteration ​→ ​initial value as input → final value as output
● Patch examples, odd/even, average
● Recursive tree ​combination of loops, splicer, accumulator and delegate
● Don’t forget → ​can give names to everything

Summary

Patch Sugar
● Many concepts are ​only a combination of simpler concepts
● Process node → field + operations
● Member operation → split/join of data fields + utility operation​ → data + matching

operations with state in/out
● Region node with delegate input ​→ ​on the fly operation definition

Guidelines
● Start with Process Definition
● Extract patch parts into ​small readable utility operations
● Only ​switch to Record or Class if you need to send the data type over a link​ → call

operations on an instance in different parts of your patch
● Record ​for small ​data ‘packages’ the are sent around in the patch​ (rectangle,

spreads, vectors...) → often re-created every frame → needs to store the new instance
back to field

● Class ​for more ​central types that manage​ logic → usually not created/deleted every
frame

● Try to keep one path for classes (reference) to have a well defined order → every op
changes the same data → ​multiple read operations are no problem

