
VL Concepts + Patterns II
Tebjan Halm + Elias Holzer NODE17

Intro

Adaptive and Generic
Idea
Generics
Generic Types
Adaptive

Delegates
Idea
Basic Use Case
Custom Layer System

Collections and LINQ
Collection Types
Collection Operations
LINQ

Reactive
Idea
Reactive Operations

Large Collections
Large Object Heap
Double Buffer

Upcoming
Imports
Interfaces
Video Tutorials

Intro
● Wanted to do:
● Top-Down view on everything
● Small simple examples
● See some libs that use a certian concept extensively
● Software Patterns

Examples Overview
●

Adaptive and Generic

Idea
● Strict type system comes with a draw back see vvvv GetSlice, +,
● Both solve the same problem: One node in node browser → work for many types →

simpler, more flexible patching
● But with different ideas behind them:
● Generic: same definition for all types → GetSlice
● Adaptive: make specific definition for type → +, Lerp or ComputeArea for Rectangle or

Circle

Generics
● Defines nodes that work for all types or a subset of types → try to write it for the most

‘super’ type
● One definition → One node in node browser → compiler generates concrete

implementation when needed
● Often build with other generic operations
● First/Last slice example patch

Generic Types
● Generic Types have the same concept → Type parameters written with <T>
● Genric types of generic types is possible and handled by the compiler for example:

Spread<PointWithColor<Vector3>>

Adaptive
● A specific signature gets registered to the system
● Everyone can implement it with same name + same pins, also member nodes → only

signature counts
● Generic pins are allowed!
● Many definitions → One [Adaptive] node in node browser (+ hidden concrete ones) →

compiler tries to find right implementaion
● Double click adaptive node to replace with concrete one or see what is available
● Adaptives also help to define generic nodes

Delegates

Idea
● Ad hoc operation definition
● Not registered in node browser but sent over link
● Call with Invoke node → see basic example
● Invoke can feed in data and enclosing operation can link in data
● Invoke will get the result → Invoke is (probably) in an operation that cannot do

everything on its own
● Node with delegate input can be created as region → sugar for delegate + link
● Can have many delegate inputs → multiple layers → see assign menu → lifetime

manager
● Loops are also just nodes with delegate input + slicer / accumulator feature

Basic Use Case
● Help an operation to complete a task → First/Last with selector patch
● Put type specific parts of the operation in an Invoke and let user provide delegate

because user knows about the intended type
● In FirstAndLast it makes sense to pass it on to an input

Custom Layer System
● Well known from vvvv → Group joines layers into one new layer
● Collect all quads into one big list in the right order
● Layer gets the list and adds its data → called with the list/place where to add the data
● Group just passes the list on by calling the incoming layer → and so on
● Check Custome layer patch

Collections and LINQ

Collection Types
● Sequence
● Spread
● SpreadBuilder
● List
● Array
● Dictionary
● HashSet
● String → Array of characters

Collection Operations
● GetSlice vs GetItem
● Spread operation overview
● SpreadBuilder has almost the same
● SpreadBuilder for small and many local apread ops

LINQ
● Defines a set of operators which can work on different kind of data streams
● Two kinds escpially useful for us: Sequence and Observable
● Seqeuence → works for almost all collections
● Most nodes have one delegate to do type specific work → operation itself handles the

collection handling → complicated programming is cast away → well tested over years
and works!

● Needs Memoize for multi sinks because of how it works internally → reason for dev lib,
would need wrappers like reactive nodes

● Helpful examples

● Where → filter elements
● Project, Select → change type
● OrderBy → select element to order
● Build helper types on the fly → tuple or small record

Reactive

Idea
● LINQ is pull data, RX is push data → turns the idea around → events → data stream

oder time
● All regions get called when event happens
● Easy async/threading
● Can send everything, preferrably records

Reactive Operations
● Sources: Input devices, Interval
● In patch: ToObservable (and Sequence)
● Event modifiers → ForEach (and Keep)
● All LINQ operators

Large Collections

Large Object Heap
● .NET limitation
● Everything above 85 kib gets moved to the large object heap
● Slows down garbage collection → even stops the whole program
● Show particle example in CraftLie
● Problem is dynamic counts → cannot create/delete big memory per frame

Double Buffer
● To avoid LOH collection one needs to create one big place in memory and hold that
● Spreadbuilder can do that, it doubles its memory when more elements than capacity
● For dynamic instances like particles use two builders → add and read from A, clear and

put result into B → end of frame swap the references → next frame the results are in A
again because B is now A → like ping pong

● Fix particle example

Upcoming

Imports
● Drag’n’drop libs → play with them (WHILE RUNNING!!!)
● Opens up to all .NET libs you can find online + Framework
● Enables everyone to extend the library → looking forward to new vl packs

Interfaces
● Manage different types in one collection
● Call different type in the same way
● Build UIs
● Build a 3D engine → scenegraph

Video Tutorials
● From vl4vvvv beginner workshop
● From this reference workshop
● From CraftLie
● From Game Project

