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Intro 
● Wanted to do: 
● Top-Down view on everything 
● Small simple examples 
● See some libs that use a certian concept extensively 
● Software Patterns 

 

Examples Overview 
●  

Adaptive and Generic 

Idea 
● Strict type system comes with a draw back see vvvv GetSlice, +, .... 
● Both solve the same problem: One node in node browser → work for many types → 

simpler, more flexible patching 
● But with different ideas behind them: 
● Generic: same definition for all types → GetSlice 
● Adaptive: make specific definition for type → +, Lerp or ComputeArea for Rectangle or 

Circle 
 

Generics 
● Defines nodes that work for all types or a subset of types → try to write it for the most 

‘super’ type 
● One definition → One node in node browser → compiler generates concrete 

implementation when needed 
● Often build with other generic operations 
● First/Last slice example patch 

 



Generic Types 
● Generic Types have the same concept → Type parameters written with <T> 
● Genric types of generic types is possible and handled by the compiler for example: 

Spread<PointWithColor<Vector3>> 

Adaptive 
● A specific signature gets registered to the system 
● Everyone can implement it with same name + same pins, also member nodes → only 

signature counts 
● Generic pins are allowed! 
● Many definitions → One [Adaptive] node in node browser (+ hidden concrete ones) → 

compiler tries to find right implementaion 
● Double click adaptive node to replace with concrete one or see what is available 
● Adaptives also help to define generic nodes 

 

Delegates 

Idea 
● Ad hoc operation definition 
● Not registered in node browser but sent over link 
● Call with Invoke node → see basic example 
● Invoke can feed in data and enclosing operation can link in data 
● Invoke will get the result → Invoke is (probably) in an operation that cannot do 

everything on its own 
● Node with delegate input can be created as region → sugar for delegate + link 
● Can have many delegate inputs → multiple layers → see assign menu → lifetime 

manager 
● Loops are also just nodes with delegate input + slicer / accumulator feature 

 

Basic Use Case 
● Help an operation to complete a task → First/Last with selector patch 
● Put type specific parts of the operation in an Invoke and let user provide delegate 

because user knows about the intended type 
● In FirstAndLast it makes sense to pass it on to an input 

 



Custom Layer System 
● Well known from vvvv → Group joines layers into one new layer 
● Collect all quads into one big list in the right order 
● Layer gets the list and adds its data → called with the list/place where to add the data 
● Group just passes the list on by calling the incoming layer → and so on 
● Check Custome layer patch 

 
 

Collections and LINQ 

Collection Types 
● Sequence 
● Spread 
● SpreadBuilder 
● List 
● Array 
● Dictionary 
● HashSet 
● String → Array of characters 

 

Collection Operations 
● GetSlice vs GetItem 
● Spread operation overview 
● SpreadBuilder has almost the same 
● SpreadBuilder for small and many local apread ops 

 

LINQ 
● Defines a set of operators which can work on different kind of data streams 
● Two kinds escpially useful for us: Sequence and Observable 
● Seqeuence → works for almost all collections 
● Most nodes have one delegate to do type specific work → operation itself handles the 

collection handling → complicated programming is cast away → well tested over years 
and works! 

● Needs Memoize for multi sinks because of how it works internally → reason for dev lib, 
would need wrappers like reactive nodes 

● Helpful examples 



● Where → filter elements 
● Project, Select → change type 
● OrderBy → select element to order 
● Build helper types on the fly → tuple or small record 

Reactive 

Idea 
● LINQ is pull data, RX is push data → turns the idea around → events → data stream 

oder time 
● All regions get called when event happens 
● Easy async/threading 
● Can send everything, preferrably records 

 

Reactive Operations 
● Sources: Input devices, Interval 
● In patch: ToObservable (and Sequence) 
● Event modifiers → ForEach (and Keep) 
● All LINQ operators 

Large Collections 

Large Object Heap 
● .NET limitation 
● Everything above 85 kib gets moved to the large object heap 
● Slows down garbage collection → even stops the whole program 
● Show particle example in CraftLie 
● Problem is dynamic counts → cannot create/delete big memory per frame 

Double Buffer 
● To avoid LOH collection one needs to create one big place in memory and hold that 
● Spreadbuilder can do that, it doubles its memory when more elements than capacity 
● For dynamic instances like particles use two builders → add and read from A, clear and 

put result into B → end of frame swap the references → next frame the results are in A 
again because B is now A → like ping pong 

● Fix particle example 



Upcoming 

Imports 
● Drag’n’drop libs → play with them (WHILE RUNNING!!!) 
● Opens up to all .NET libs you can find online + Framework 
● Enables everyone to extend the library → looking forward to new vl packs 

Interfaces 
● Manage different types in one collection 
● Call different type in the same way 
● Build UIs 
● Build a 3D engine → scenegraph 

Video Tutorials 
● From vl4vvvv beginner workshop 
● From this reference workshop 
● From CraftLie 
● From Game Project 

 
 


