

ParticlesGPU Library
Documentation

Contents:
● Particle System using textures (pg.02)
● Reading Data Texture inside a Shader (pg.14)
● Mega Mesh (pg.17)

Natan Sinigaglia | dottore

Finally I found the time to think and write a proper document about my ParticlesGPU
library. In the first part I'll try to explain the main principles of this approach to
particles in GPU and after I'll go deeper in details on specific featured behaviours.
Credits to:
-Michael Mehling, who teached me many hlsl indispensable functions (holy tex2Dlod) while we were at
Node08.
-Viktor Vicsek, who let me discover GPU Sprites function.
-Tonfilm, for many usefull hlsl transform functions taken from his ShaderTransform and for his Bicubic
resample shader.

Particle System using textures
● A particle system is a group of single objects (particles) that

actually do something. We could build a simple particle system in
vvvv by creating a spread of values (particle's position) that
increase by a step value added every frame.

● As you see in this patch we can add the same value to all the
particle's position (from framedelay) and they will move all at the
same velocity. If we add different values to each particle, they will
move differently, depending on how big is the step value for each
one.

● What is important to understand is that in both these cases, the
particle system works in a parallel way; it just apply the same
function (+) to a list of data. (The difference of the second
system is just in the values we put into the function +, the
structure itself remains the same)

● So, a particle system is a parallel structured system.

If we would like to have 500.000 particles we should have a
spread of 500.000 slices and apply the function + to each slice,
witch is quite heavy to handle in cpu/patch. High spread count =
low performance.

● But what is a spread? Just a container of data.

Thinking at others way to manage big data containers i realized a
stupid simple thing:

What is a texture? Just a container of data.

And then i thought: GPU is a piece of hardware that easily
manages high resolution textures! It can work with a lot of data
(pixel) in a parallel way! Just what we need for a particle system.

In the following page i'll show you the similitude between spreads
and textures as data containers.

 Here is clear that we can use texture in the same way as spread, filling them with data

In a particle system we want to allow particles to move where they want, without limitations.

Let's try to use 8bit textures to store position of our particles. in a 2d particle system we would organize data as follow:

● Red = x position

● Green = y position

(we use just 2 channel of the pixels)

In this way, both x and y position will be values taken from those 128 number (in 0-1 space).This clearly is not enough for us; we need
moooore then just 128 values for x and y! we want to be abled to push particles far away, for example to position x=13964,657 and y=-
165,8465!

8bit describes a too small and too less definited space.

Fortunally, starting from shader model 2.0, directX supports float values rendering with 16bit and 32bit
depth. Now we have high detailed values in texture and we can use it to store any kind of data!

A common image texture contains
the informations to describe color
for each pixel; every pixel contains
4 channels (4 numbers)

● -an 8bit number for Red

● -an 8bit number for Green

● -an 8bit number for Blue

● -an 8bit number for alpha

8bit number = 128 possible
numbers (taken from 0 to 1,
working in rgb space).

To allow any shader to be rendered in 16 or 32 bit is necessary to compile the pixel shader with
Shader Model >= 2.0
Here the technique declaration inside the shader, where you choose shader model (it's at the end of
hlsl code):

 technique TConstant
 {
 pass P0
 {
 VertexShader = compile vs_1_1 VS();
 PixelShader = compile ps_2_0 PS();
 }
 }

 technique TConstant
 {
 pass P0
 {
 VertexShader = compile vs_1_1 VS();
 PixelShader = compile ps_2_0 PS();
 }
 }

remember to select the correct Texture format in all the
Dynamic Texture nodes and also in all the DX9Texture,
otherwise the default format will be in 8 bit per channel

Now that we have all the ingredients, let's try to build a basic Particle System using textures!

I'll do the same particle position cycle both in patch and in shader to show you that's really the same:

● We use a grid 2x2 resolution as input mesh in the shader: we just want a quad all over the screen

● UniformScale set to 2. In this way the grid will cover the entire render space from -1 to 1.

● Blend (EX9.RenderState Advanced): Alpha Blending pin set to 0. we don't want to evaluate trasparency in rendering.

Here is the hlsl code of the shader in the previous page

////// PARAMETERS:

//transforms
float4x4 tWVP: WORLDVIEWPROJECTION ;
//texture
texture Tex <string uiname="Texture";>;
sampler Samp = sampler_state //sampler for doing the texture-lookup
{
 Texture = (Tex); //apply a texture to the sampler
 MipFilter = none; //sampler states
 MinFilter = none;
 MagFilter = none;
};
bool Reset;
float Increment; //value to add every frame; passed from the patch

struct vs2ps
{
 float4 Pos : POSITION ;
 float4 TexCd : TEXCOORD0 ;
};

////// VERTEXSHADERS

vs2ps VS(
 float4 Pos : POSITION ,
 float4 TexCd : TEXCOORD0)
{
 //inititalize all fields of output struct with 0
 vs2ps Out = (vs2ps)0;
 //transform position
 Out.Pos = mul(Pos, tWVP);
 Out.TexCd = TexCd;
 return Out;
}

////// PARAMETERS:

//transforms
float4x4 tWVP: WORLDVIEWPROJECTION ;
//texture
texture Tex <string uiname="Texture";>;
sampler Samp = sampler_state //sampler for doing the texture-lookup
{
 Texture = (Tex); //apply a texture to the sampler
 MipFilter = none; //sampler states
 MinFilter = none;
 MagFilter = none;
};
bool Reset;
float Increment; //value to add every frame; passed from the patch

struct vs2ps
{
 float4 Pos : POSITION ;
 float4 TexCd : TEXCOORD0 ;
};

////// VERTEXSHADERS

vs2ps VS(
 float4 Pos : POSITION ,
 float4 TexCd : TEXCOORD0)
{
 //inititalize all fields of output struct with 0
 vs2ps Out = (vs2ps)0;
 //transform position
 Out.Pos = mul(Pos, tWVP);
 Out.TexCd = TexCd;
 return Out;
}

////// PIXELSHADERS:

float4 PS(vs2ps In): COLOR
{
 //take the red from the last frame texture and add "Increment"
 float newRed = tex2D(Samp, In.TexCd).r + Increment;
 // when reset the cycle:
 if(Reset) newRed = 0;
 return float4(newRed,0,0,0);
}

////// TECHNIQUES:

technique CycleRed
{
 pass P0
 {
 VertexShader = compile vs_1_1 VS();
 PixelShader = compile ps_2_0 PS();
 }
}

////// PIXELSHADERS:

float4 PS(vs2ps In): COLOR
{
 //take the red from the last frame texture and add "Increment"
 float newRed = tex2D(Samp, In.TexCd).r + Increment;
 // when reset the cycle:
 if(Reset) newRed = 0;
 return float4(newRed,0,0,0);
}

////// TECHNIQUES:

technique CycleRed
{
 pass P0
 {
 VertexShader = compile vs_1_1 VS();
 PixelShader = compile ps_2_0 PS();
 }
}

Let's do a more sofisticated particle system. This is
what we want:

● 3 float values for 3d dimensional position (XYZ)
● Particle's birth time (to obtain particle's life time, usefull for

animations like alpha fade in and others...)
● PP velocity (different xyz velocity for each particle; these values

will be added to the previous frame position, frame by frame)
● PP Reset (Per Particle reset; we want to be able to reset each

particle individually)
● Emitter xyz Position (where the particles will be emitted on reset

bang)

See in the next page how to do this in patch

How to do the same in Shader?

● XYZ position values for each particle:
We use RGB channels of a 32bit float texture to store X,Y,Z in
pixels. Every pixel is a particle --->

● Birth Time for each pixel-particle:
We give the UpTime value to the shader, so we'll assign it to
the A channel of resetted pixels/particles inside the pixel
shader.

● XYZ velocity for every pixel-particle:
We feed our ParticlesCycle shader (that will manage the
texture cycle) with a velocity texture: we need 3 values for xyz
velocity and we need quite high value resolution to use also
small velocity values; for this reason we'll use an RGBA 16bit
float texture format (there isn't a float texture format with 3
channels, simply we won't use the A channel).

● PP reset:
We feed the ParticlesCycle shader also with a bang texture:
each pixel of this texture will tell to the relative pixel of the
cycle when is resetted. For this texture we just need a boolean
value (0/1) so we can just use a simple format like 8A (just the
alpha channel in 8 bit depth).
Note: we could write the PPreset bang values in the A channel of the velocity
texture, optimizing and saving texture lookups in PixelShader. I decided to keep
separated for didactic reasons.

● Control emission XYZ position:
We provide xyz emitter position to the shader in order to place
resetted particles where we want (we'll assign the resetted
position inside the pixel shader)

Here is the hlsl code of the ParticlesCycle Shader in the previous page

// PARAMETERS:
//transforms
float4x4 tWVP: WORLDVIEWPROJECTION ;

texture TexPrev <string uiname="Previous Frame Data Texture";>;
sampler SampPrev = sampler_state//sampler for doing the texture-
lookup
{
 Texture = (TexPrev); //apply a texture to the sampler
 MipFilter = none; //sampler states
 MinFilter = none;
 MagFilter = none;
};

texture TexReset <string uiname="PP Reset Texture";>;
sampler SampReset = sampler_state
{
 Texture = (TexReset);
 MipFilter = none;
 MinFilter = none;
 MagFilter = none;
};

texture TexVel <string uiname="PP XYZ Velocity Texture";>;
sampler SampVel = sampler_state
{
 Texture = (TexVel);
 MipFilter = none;
 MinFilter = none;
 MagFilter = none;
};
float UpTime;
float3 ResetPos <string uiname="Emitter Position";>;

struct vs2ps
{
 float4 Pos : POSITION ;
 float4 TexCd : TEXCOORD0 ;
};

// PARAMETERS:
//transforms
float4x4 tWVP: WORLDVIEWPROJECTION ;

texture TexPrev <string uiname="Previous Frame Data Texture";>;
sampler SampPrev = sampler_state//sampler for doing the texture-
lookup
{
 Texture = (TexPrev); //apply a texture to the sampler
 MipFilter = none; //sampler states
 MinFilter = none;
 MagFilter = none;
};

texture TexReset <string uiname="PP Reset Texture";>;
sampler SampReset = sampler_state
{
 Texture = (TexReset);
 MipFilter = none;
 MinFilter = none;
 MagFilter = none;
};

texture TexVel <string uiname="PP XYZ Velocity Texture";>;
sampler SampVel = sampler_state
{
 Texture = (TexVel);
 MipFilter = none;
 MinFilter = none;
 MagFilter = none;
};
float UpTime;
float3 ResetPos <string uiname="Emitter Position";>;

struct vs2ps
{
 float4 Pos : POSITION ;
 float4 TexCd : TEXCOORD0 ;
};

// VERTEXSHADERS
vs2ps VS(
 float4 Pos : POSITION ,
 float4 TexCd : TEXCOORD0)
{
 vs2ps Out = (vs2ps)0;
 Out.Pos = mul(Pos, tWVP); //transform position
 Out.TexCd = TexCd;
 return Out;
}
// PIXELSHADERS:
float4 PS(vs2ps In): COLOR
{
 // take the RGBA values from the last frame texture
 float4 lastFrame = tex2D(SampPrev, In.TexCd);
 // get the reset bang info from the alpha channel of the Reset Texture
 bool reset = tex2D(SampReset, In.TexCd).a > 0.5;
 // get the XYZ velocity values from the RGB channels of Velocity Texture
 float3 vel = tex2D(SampVel, In.TexCd).rgb;
 // new RGBA data
 float4 newData = 0;
 /////// GPU CYCLE:
 if(reset) //set RGB to the reset position and A to the birth time
 { newData = float4(ResetPos, UpTime); }
 else //get the old xyz and add xyz velocity; pass the birthTime to A
 { newData = float4(lastFrame.rgb + vel, lastFrame.a); }
 return newData;
}
// TECHNIQUES:
technique RGBA_Cycle
{
 pass P0
 {
 VertexShader = compile vs_1_1 VS();
 PixelShader = compile ps_2_0 PS();
 }
}

// VERTEXSHADERS
vs2ps VS(
 float4 Pos : POSITION ,
 float4 TexCd : TEXCOORD0)
{
 vs2ps Out = (vs2ps)0;
 Out.Pos = mul(Pos, tWVP); //transform position
 Out.TexCd = TexCd;
 return Out;
}
// PIXELSHADERS:
float4 PS(vs2ps In): COLOR
{
 // take the RGBA values from the last frame texture
 float4 lastFrame = tex2D(SampPrev, In.TexCd);
 // get the reset bang info from the alpha channel of the Reset Texture
 bool reset = tex2D(SampReset, In.TexCd).a > 0.5;
 // get the XYZ velocity values from the RGB channels of Velocity Texture
 float3 vel = tex2D(SampVel, In.TexCd).rgb;
 // new RGBA data
 float4 newData = 0;
 /////// GPU CYCLE:
 if(reset) //set RGB to the reset position and A to the birth time
 { newData = float4(ResetPos, UpTime); }
 else //get the old xyz and add xyz velocity; pass the birthTime to A
 { newData = float4(lastFrame.rgb + vel, lastFrame.a); }
 return newData;
}
// TECHNIQUES:
technique RGBA_Cycle
{
 pass P0
 {
 VertexShader = compile vs_1_1 VS();
 PixelShader = compile ps_2_0 PS();
 }
}

Reading Data Texture inside a Shader
Well, just 5 min ago my laptop's graphic card said goodbye while I was writing in OpenOffice (be
carefully, It really push the hardware over the limit). This mean from now on there will be less (none)
render screenshots and more wonderful drawings.

In the last 13 pages we saw how to use texture as dynamic containers for any kind of data. Now we'll
focus on how to use these texture.

In CPU particle system (pg.10) we would use particles data (stored in the spread) as following:

● take the spread containing all the data (XYZB)

● divide it (With a vector4D split)

● Use XYZ in a Transform node and provide it to any shader

● Obtain the LifeTime (Current UpTime – BirthTime)

really easy so far....

Let's discuss in the next page how to retrieve data from a
texture and use it in our ParticlesGPU shaders

To achieve this inside a shader we work respectively:
● In Vertex Shader to transform the geometry (VS works on vertices)
● In Pixel Shader to adjust the shading of geometry (PS works on pixels that cover the

rendered geometry = what you actually see)

We want to use Data Texture for:
● Transform geometry (translate, scale,..) (like we usually do with transforms)
● Control shading parameters (example: using the birth time to influence the color)

Both in VS and PS we need to read data from the Data Texture of the shader cycle:
● First of all we need to declare the texture in the declaration part of the code (the

beginning); we also create a sampler that samples the texture (VS and PS will call this
sampler to read the texture).

texture TexData <string uiname="Data Texture";>;
sampler SampData = sampler_state //sampler for doing the texture-lookup
{
 Texture = (TexData);
 MipFilter = none;
 MinFilter = none;
 MagFilter = none;
};

how to access DataTexture RGBA information inside VS and PS:

● In Vertex Shader we use the function tex2Dlod(Sampler,TexCoord)
As we are in the vertex shader, we work with vertices; each vertex, using the
tex2Dlod function, will have access to the Data Texture and will be able to use those
values to transform itself. Example:

Pos.xyz += tex2Dlod(Samp,TexCd).rgb;
this line of code simply tells: “take the current vertex XYZ position (in the object space)
and add to it the values stored in RGB channels of one particular point of this texture
(the point is indicated by vertex's TexCd)”

VS applies this operation to all the vertices coming from the mesh.

● In Pixel Shader we use the common tex2D(Sampler,TexCoord)function. I said
common because this is the function always used to apply a texture onto a geometry.

In the next pages I'll explain how to prepare meshes in a clever
way to be controlled by values in the Data Texture.

Mega Mesh
What's inside a Mesh?
● Vertex Buffer: where all the information about each vertex of the mesh are

stored. directx documentation for a detailed information about vertexbuffers
● Indices: in directx the basic element (polygon) that compounds surface is a

triangle face. Indexbuffer defines which 3 vertices in the vertexbuffer make
up each triangle face of the mesh.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/directx9_c/directx/graphics/ProgrammingGuide/GettingStarted/Direct3DResources/VertexBuffers/vertexbuffers.asp

As you probably noticed, in ParticlesGPU examples there are dedicated modules
that generate a single huge mesh for all the particles. Let's explain why:

In a common CPU approach (like we saw at pg.14) we use particles data (spreads) to feed a
Transform node.
When a shader receive a spread (can be spread of transforms, colors, textures, ...any other input pin
of the shader), this happens EVERY FRAME:

● It loads (“call”) the mesh from CPU memory (it's a slow operation).
● It applies VS to the mesh (using the first slice from inputs)
● It applies PS to those pixels interested by the surface (using the first slice from inputs)

Then it repeats these steps using the second slice value from input spread. And it goes this way throw
all the slices of the spread.

This means if we have 5000 objects (a spread of 5000 in the Transform node), the shader will
repeat the entire pipeline 5000 times each frame!
It will call 5000 times the mesh from CPU, every frame! This is a real bottleneck.
...that's why your pc start to cry and performances fall down using Transform with big spreads...
Clearly this approach is impracticable if we have in mind to render up to 1 million of objects. We need
to reduce the bottleneck.

The solution is to build a single big mesh containing all the particles that will be
rendered.
if we want 5000 quad particles, our Mega Mesh will contain 5000 overlapping quads written as a single
geometry.
The shader will render 5000 particles, calling the mesh just one time per frame. There's a massive
performance improvement...

In the next page I'll show you how to build this unique Mega Mesh.

Let's take as reference our particle system builded in pg.12
We want to build a mesh containing all the 16 particles evaluated in the Data Texture coming out of the
Shader Cycle. We decide each particle is a quad.

The Mega Mesh will contain:

● XYZ vertices position of all the 16 quads (there will be 16 quads in the same position {0,0}).
● Texture Coordinates 0 to retrieve informations (xyz position, birth time) from the Data Texture.
● Texture Coordinates 1 to apply an image texture onto the quads (these texCoord are obviously

different from the previous one)
● Indices in order to build quads faces.

Particle 01

Vertex 0 Vertex 1

Vertex 2 Vertex 3

Particle 02

Vertex 4 Vertex 5

Vertex 6 Vertex 7

Particle 16

Vertex 60 Vertex 61

Vertex 62 Vertex 63

TexCd = { 0, 0 }
Vertex 0
Vertex 1
Vertex 2
Vertex 3
Vertex 4
Vertex 5
Vertex 6
Vertex 7
...
...
...
Vertex 60
Vertex 61
Vertex 62
Vertex 63

TexCd = { 0.333, 0 }

TexCd = { 1, 1 }

...

Data Texture from
Particle Cycle Shader

01 02 03 04
05 06 07 08
09 10 11 12
13 14 15 16

0
0

0.333
0

0.666
0

1
0

0
0.333

0.333
0.333

0.666
0.333

1
0.333

0
0.666

0.333
0.666

0.666
0.666

1
0.666

0
1

0.333
1

0.666
1

1
1

UV coordinates for each pixel
(particle) of the Data Texture

About Texture Coordinates 0:
All the 4 vertices of each quad need a TexCoord information that tells them wich pixel of
the Data Texture they will sample. All the 4 vertices will sample the same pixel
(otherwise they will move differently and the quad shape will deform) => they will have
the same TexCoord.

All the 16 Quads overlapping
in the same position

Each Particle corresponds to a
certain pixel in Data Texture

Look at next 2 pages to see the Mega Mesh Module

Couple of things on Mega Mesh:
● When you have thousands of particles, the spreads inside Mega Mesh Module will

have a huge amount of slices (up to millions!).

For this reason you need to optimize the module and switch all the slices off when
the mesh is builden (you build the mesh just one time, not every frame).

Use some S+H nodes just before the VertexBuffer inputs and remember to “Apply”
both VertexBuffer and Mesh nodes only when generating the mesh.

● When you find the correct settings for your mesh you can write it as an X File (Mesh
file with extension .x) using Writer (EX9. Geometry Xfile) node.
 ...(C1, G1, D2, Eb2, G1, D2, Eb2, G1, D2, Eb2)...

Then you can use FileX (EX9. Geometry Load) node to load the mesh instead of
using the Mega Mesh Module.

The cool thing is the “Load In Background” pin. If Enabled you can upload huge
meshes without freeze the framerate. Quite amazing...

....ok, from now on it's really problematic to work
without GPU... ehehehe
I'll post this first part of the Document so you can
start to look at it.
As soon as possible I'll continue...
Keep updated

Natan

...!!!... It seems will be a loooong paper in the end... :)

	Pagina 1
	Pagina 2
	Pagina 3
	Pagina 4
	Pagina 5
	Pagina 6
	Pagina 7
	Pagina 8
	Pagina 9
	Pagina 10
	Pagina 11
	Pagina 12
	Pagina 13
	Pagina 14
	Pagina 15
	Pagina 16
	Pagina 17
	Pagina 18
	Pagina 19
	Pagina 20
	Pagina 21
	Pagina 22
	Pagina 23
	Pagina 24

